Problem: Monopolarity
Definition:
Input: |
A graph G in this class.
|
Output: |
True iff G is monopolar.
|
Linear
- (0,2)-colorable
- (0,2)-colorable ∩ chordal
- (0,2)-graph ∩ bipartite
- (0,3)-colorable ∩ chordal
- (1,1)-colorable
- (1,2)-colorable ∩ chordal
- (1,2)-polar ∩ chordal
- 1-DIR
- 1-bounded bipartite
- (2,0)-colorable ∩ chordal
- (2,2)-colorable ∩ chordal
- 2-bounded bipartite
- 2-connected ∩ (4-fan,Cn+4,K5 - e,S3,H,K3
∪ 2K1)-free
- 2-leaf power
- 2-subdivision
- 2-subdivision ∩ planar
- 2-tree
- 2-tree ∩ probe interval
- (2C4,3K2,C6,E,P2 ∪ P4,P6,X25,X26,X27,X28,X29,odd-cycle)-free
- 2K1-free
- (2K2,3K1,C4,P4)-free
- (2K2,3K1,P3)-free
- (2K2,C4,C5,H,S3,X160,X159,net,rising
sun)-free
- (2K2,C4,C5,S3,X159,X160,H,co-rising
sun,net)-free
- (2K2,C4,C5,S3,claw,net)-free
- (2K2,C4,C5,S3,co-claw,net)-free
- (2K2,C4,C5,S3,co-rising sun,net,rising sun)-free
- (2K2,C4,C5,S3,co-rising sun,net)-free
- (2K2,C4,C5,S3,net,rising sun)-free
- (2K2,C4,C5,S3,net)-free
- (2K2,C4,C5,claw,diamond)-free
- (2K2,C4,C5,co-claw,co-diamond)-free
- (2K2,C4,C5,co-sun)-free
- (2K2,C4,C5,sun)-free
- (2K2,C4,C5)-free
- (2K2,C4,P4,triangle)-free
- (2K2,C4,P4)-free
- (2K2,C4)-free
- (2K2,C5,triangle)-free
- (2K2,P3,triangle)-free
- (2K2,P3)-free
- 2K2-free ∩ bipartite
- (2K3,2P3,C4,K3 ∪ P3,P4)-free
- (2K3,2P3,Cn+4,K3 ∪ P3)-free
- (2K3,Cn+4)-free
- (2P3,3K2,C4,C5,H,P2 ∪ P4,P5,S3,X1,X160,X159,X161,X162,X46,X70,net,rising sun)-free
- (2P3,C4,P4)-free
- 3-leaf power
- 3-tree
- 3-tree ∩ planar
- (3K1,C4,C5)-free
- (3K1,C4,P3)-free
- (3K1,C5,butterfly,diamond)-free
- (3K1,P3)-free
- (3K2,C6,P7,X164,X165,odd-cycle,sunlet4)-free
- (3K3,Cn+4)-free
- (3P3,Cn+4,P3 ∪ P4,P5,X102,X180,X181,X182,X183,A)-free
- 3d grid
- (4-fan,Cn+4,K5 - e,S3,X100,X101,X102,H,K3 ∪ 2K1)-free
- (4-fan,Cn+4,K5 - e,S3,H,K3
∪ 2K1)-free
- 4-leaf power
- 5-leaf power
- 5-leaf power ∩ distance-hereditary
- (6,1)-chordal ∩ bipartite
- (6,2)-chordal ∩ bipartite
- (A,T2,odd-cycle)-free
- AC
- AT-free ∩ bipartite
- AT-free ∩ chordal
- Apollonian network
- B0-VPG ∩ bipartite
- B0-VPG ∩ chordal
- B0-VPG ∩ strongly chordal
- BW3-free ∩ modular
- (C4,C5,C6,C7,C8,XC11,claw,diamond)-free
- (C4,C6,C8,K1,4,odd-cycle)-free
- (C4,C6,C8,K1,4,odd-cycle)-free ∩ planar
- (C4,C6,odd-cycle)-free
- (C4,K4,claw,diamond)-free
- (C4,P4,dart)-free
- (C4,P4)-free
- (C4,P3,triangle)-free
- (C4,P3)-free
- (C4,claw,diamond)-free
- C4-free ∩ C6-free ∩ bipartite
- C4-free ∩ co-comparability
- C4-free ∩ induced-hereditary pseudo-modular
- (C5,C6 ∪ K1,C7,K3,3 ∪ K1,K3,3-e ∪ K1,K5 - e,domino ∪ K1,triangle)-free
- (C5,C6,P6,triangle)-free
- (C5,co-butterfly,co-diamond,triangle)-free
- C6-free ∩ modular
- (Cn+4,H)-free
- (Cn+4,K4)-free
- (Cn+4,P5,bull)-free
- (Cn+4,P5,claw,gem)-free
- (Cn+4,S3 ∪ K1,X103,claw,eiffeltower,net ∪ K1)-free
- (Cn+4,S3 ∪ K1,claw,net)-free
- (Cn+4,S3,claw,net)-free
- (Cn+4,S3,net)-free
- (Cn+4,S3)-free
- (Cn+4,T2,X31,XF2n+1,XF3n)-free
- (Cn+4,T2,XF2n+1)-free
- (Cn+4,T2,net)-free
- (Cn+4,X102,X204,P3 ∪ 2K1,gem)-free
- (Cn+4,X59,longhorn)-free
- (Cn+4,XF12n+3,XF62n+2,X34,X36,co-XF2n+1,co-XF3n)-free
- (Cn+4,K3 ∪ 3K1,dart,gem)-free
- (Cn+4,bull,dart,gem)-free
- (Cn+4,claw,gem)-free
- (Cn+4,claw,net)-free
- (Cn+4,claw)-free
- (Cn+4,dart,gem)-free
- (Cn+4,diamond)-free
- (Cn+4,gem)-free
- (Cn+4,odd-sun)-free
- (Cn+4,sun)-free
- Cn+4-free
- (Cn+6,odd-cycle)-free
- Dilworth 1
- (E,odd-cycle)-free
- E-free ∩ bipartite
- EPT ∩ chordal
- Fn grid
- Helly chordal
- Helly chordal ∩ clique-chordal
- Hilbertian
- (K1,4,odd-cycle)-free
- (K1,4,odd-cycle)-free ∩ planar
- K2,3-free ∩ hereditary modular
- K2-free
- K3-minor-free
- (K4,claw,diamond)-free
- (K5 - e,S3,3K2,A,C4
∪ 2K1,E,P2 ∪ P3,R,claw,co-twin-house,odd-hole)-free
- (K5 - e,W5,A,C4 ∪ 2K1,P2 ∪ P3,R,claw,co-twin-C5,co-twin-house)-free
- (K5 - e,A,C4 ∪ 2K1,P2 ∪ P3,R,claw,co-twin-house,odd-hole)-free
- NLCT-width 1
- (P3,triangle)-free
- P3-free
- (P4,cycle)-free
- (P4,triangle)-free
- (P5,bull)-free ∩ interval
- P6-free ∩ chordal bipartite
- (P7,odd-cycle,star1,2,3,sunlet4)-free
- (P7,odd-cycle,star1,2,3)-free
- (P7,odd-cycle)-free
- P7-free ∩ bipartite
- PURE-2-DIR
- (S3,3K2,E,odd-hole)-free ∩ line
- (S3,claw,net)-free ∩ chordal
- (S3,net)-free ∩ chordal
- (S3,net)-free ∩ split
- S3-free ∩ chordal
- SC 2-tree
- SC 3-tree
- SC k-tree, fixed k
- (T2,X2,X3,hole,triangle)-free
- (T2,X205,X206,X207,X208,even-hole,odd-cycle)-free
- (T2,cycle)-free
- (T3,X81,cycle)-free
- (T3,cycle)-free
- X-chordal
- X-chordal ∩ X-conformal
- X-conformal
- X-conformal ∩ bipartite ∩ hereditary X-chordal
- X-star-chordal
- (X177,odd-cycle)-free
- (X79,X80)-free ∩ modular
- (XC11,claw,diamond)-free
- (XC11,odd-cycle)-free
- (XC11,odd-cycle)-free ∩ planar
- (XC12,cycle)-free
- β-perfect ∩ co-β-perfect
- β-perfect ∩ perfect
- (P3,triangle)-free
- τk-perfect for all k >= 2
- absolute bipartite retract
- almost CIS
- almost median
- astral triple-free
- b-perfect ∩ chordal
- balanced ∩ chordal
- balanced ∩ line
- basic 4-leaf power
- bi-cograph
- biconvex
- binary Hamming
- binary tree
- binary tree ∩ partial grid
- bipartite
- bipartite ∩ bithreshold
- bipartite ∩ bounded tolerance
- bipartite ∩ boxicity 2
- bipartite ∩ bridged
- bipartite ∩ claw-free
- bipartite ∩ co-comparability
- bipartite ∩ co-perfectly orderable
- bipartite ∩ co-trapezoid
- bipartite ∩ convex-round
- bipartite ∩ cubic ∩ planar
- bipartite ∩ distance-hereditary
- bipartite ∩ girth >=9 ∩ maximum degree 3 ∩ planar
- bipartite ∩ grid intersection
- bipartite ∩ maximum degree 3
- bipartite ∩ maximum degree 3 ∩ planar
- bipartite ∩ maximum degree 4 ∩ planar
- bipartite ∩ mock threshold
- bipartite ∩ module-composed
- bipartite ∩ planar
- bipartite ∩ probe interval
- bipartite ∩ quasi-median
- bipartite ∩ tolerance
- bipartite ∩ trapezoid
- bipartite ∩ unit grid intersection
- bipartite ∩ weakly chordal
- bipartite chain
- bipartite permutation
- bipartite tolerance
- bisplit ∩ triangle-free
- block
- block duplicate
- boxicity 1
- caterpillar
- chordal
- chordal ∩ circular arc ∩ claw-free
- chordal ∩ (claw,net)-free
- chordal ∩ claw-free
- chordal ∩ clique-Helly
- chordal ∩ clique-chordal
- chordal ∩ co-chordal
- chordal ∩ co-chordal ∩ co-comparability ∩ comparability
- chordal ∩ co-comparability
- chordal ∩ cograph
- chordal ∩ comparability
- chordal ∩ diametral path
- chordal ∩ diamond-free
- chordal ∩ distance-hereditary
- chordal ∩ dominating pair
- chordal ∩ domination perfect
- chordal ∩ domino
- chordal ∩ dually chordal
- chordal ∩ gem-free
- chordal ∩ hamiltonian
- chordal ∩ hamiltonian ∩ planar
- chordal ∩ hereditary clique-Helly
- chordal ∩ irredundance perfect
- chordal ∩ maximal planar
- chordal ∩ neighbourhood perfect
- chordal ∩ odd-sun-free
- chordal ∩ planar
- chordal ∩ probe diamond-free
- chordal ∩ proper circular arc
- chordal ∩ sun-free
- chordal ∩ unipolar
- chordal ∩ unit circular arc
- chordal bipartite
- circular convex bipartite
- (claw ∪ 3K1,odd-cycle)-free
- (claw,diamond,odd-hole)-free
- (claw,diamond)-free
- (claw,odd-cycle)-free
- claw-free ∩ interval
- clique graphs of interval
- cluster
- co-bithreshold ∩ split
- co-interval ∩ cograph ∩ interval
- co-interval ∩ interval
- co-probe threshold
- co-threshold tolerance
- co-trivially perfect ∩ trivially perfect
- cograph ∩ interval
- cograph ∩ split
- comparability ∩ split
- comparability graphs of arborescence orders
- comparability graphs of posets of interval dimension 2, height 2
- comparability graphs of threshold orders
- complete
- complete bipartite
- complete split
- convex
- cubical
- cycle-free
- difference
- directed path
- disjoint union of stars
- (domino,hole,odd-cycle)-free
- domino-free ∩ modular
- doubly chordal
- (fork,odd-cycle)-free
- grid
- grid graph
- grid graph ∩ maximum degree 3
- gridline
- half
- half-disk Helly
- hamiltonian ∩ interval
- hamiltonian ∩ split
- hereditary Helly
- hereditary X-chordal
- hereditary absolute bipartite retract
- hereditary clique-Helly ∩ line ∩ perfect
- hereditary disk-Helly
- hereditary dually chordal
- hereditary median
- hereditary modular
- hereditary perfect elimination bipartite
- (hole,odd-cycle)-free
- homogeneously representable
- hypercube
- independent module-composed
- indifference
- indifference ∩ split
- intersection graph of nested intervals
- interval
- interval bigraph
- interval containment bigraph
- isometric subgraph of a hypercube
- k-path graph, fixed k
- k-starlike
- k-tree, fixed k
- leaf power
- leaf power ∩ min leaf power
- line
- line ∩ mock threshold
- line ∩ perfect
- line ∩ well covered
- line graphs of acyclic multigraphs
- line graphs of bipartite graphs
- line graphs of planar cubic bipartite graphs
- line graphs of triangle-free graphs
- linear NLC-width 1
- linear domino
- linear domino ∩ maximum degree 4
- linear interval
- lobster
- maximal outerplanar
- maximum degree 1
- median
- median ∩ planar
- mock threshold ∩ split
- modular
- modular ∩ open-neighbourhood-Helly
- monopolar
- (odd-cycle,star1,2,3,sunlet4)-free
- (odd-cycle,star1,2,3)-free
- odd-cycle-free
- partial 3d grid
- partial cube
- partial grid
- perfect ∩ triangle-free
- perfect elimination bipartite
- permutation ∩ split
- power-chordal
- premedian
- probe bipartite chain
- probe block
- probe complete
- probe interval ∩ tree
- probe interval bigraph
- probe threshold ∩ split
- proper interval
- proper interval bigraph
- pseudo-median ∩ triangle-free
- pseudo-modular ∩ triangle-free
- pseudo-split
- ptolemaic
- ptolemaic ∩ weakly geodetic
- quasi-threshold
- restricted block duplicate
- rigid circuit
- rooted directed path
- semi-median
- solid grid graph
- split
- split ∩ strongly chordal
- split ∩ superperfect
- split ∩ threshold signed
- square of tree
- star convex
- strictly chordal
- strongly chordal
- superfragile
- thick tree
- threshold
- tolerance ∩ tree
- tolerance ∩ triangle-free
- tree
- tree convex
- triad convex
- triangulated
- trivially perfect
- undirected path
- unit interval
- unit interval bigraph
Polynomial
- (1,2)-polar
- 1-bounded tripartite
- (2,0)-colorable
- 2-connected ∩ (P6,claw)-free
- 2-threshold
- (2K2,3K1,C5,C6,C7,C8,H,K1,4,X85)-free
- (2K2,3K1,C5,C6,C7,C8,H,X85)-free
- (2K2,3K1,C5,C6,C7,C8)-free
- (2K2,3K1)-free
- (2K2,4K1,C5,co-diamond)-free
- (2K2,4K1,co-claw,co-diamond)-free
- (2K2,5K1,C5,K3 ∪ 2K1,P3 ∪ 2K1,C6,C7,C8,K1,4,K5 - e,claw ∪ K1,co-butterfly,co-cricket,co-dart,co-gem)-free
- (2K2,A,H)-free
- (2K2,C5,S3,X159,X160,X161,X162,X46,X70,2P3,3K2,H,P2 ∪ P4,X1,co-rising sun,house,net)-free
- (2K2,C5,C6,C7,C8,XC11,co-claw,co-diamond)-free
- (2K2,C5,C6,C7,C8)-free
- (2K2,C5,C6,net)-free
- (2K2,C5,T2)-free
- (2K2,C5)-free
- (2K2,K3,3,K3,3+e,P4,2P3)-free
- (2K2,P4,2P3)-free
- (2K2,P4,co-dart)-free
- (2K2,P4)-free
- (2K2,2P3,C6)-free
- (2K2,C6,C8,K1,4,odd
anti-cycle)-free
- (2K2,C6,odd anti-cycle)-free
- (2K2,P6)-free
- (2K2,X91,co-claw)-free
- (2K2,claw)-free
- (2K2,co-claw,co-diamond)-free
- (2K2,co-diamond)-free
- (2K2,house)-free
- (2K2,net)-free
- (2K2,odd anti-hole)-free
- 2K2-free
- 2K2-free ∩ probe cograph
- 2K2-free ∩ probe trivially perfect
- (2K3 + e,3K1,C5,T2,X18,X94,co-domino)-free
- (2K3 + e,5-pan,A,C6,E,K3,3-e,P6,R,X166,X167,X169,X170,X171,X172,X18,X37,X45,X5,X58,X84,X95,X98,5-pan,A,C6,E,P6,R,X166,X167,X169,X170,X171,X172,X18,X37,X45,X5,X58,X84,X95,X98,antenna,co-antenna,co-domino,co-fish,co-twin-C5,co-twin-house,domino,fish,twin-C5,twin-house)-free
- (2K3 + e,A,C5,C6,E,H,K3,3-e,P6,R,S3,X166,X167,X168,X169,X170,X171,X172,X18,X45,X5,X58,X84,X95,X96,X98,A,C6,E,H,P6,R,X166,X167,X168,X169,X170,X171,X172,X18,X45,X5,X58,X84,X95,X96,X98,antenna,co-antenna,co-cross,co-domino,co-fish,co-twin-house,cross,domino,fish,net,twin-house)-free
- (2K3 + e,A,C5,C6,E,K3,3-e,P6,R,X166,X167,X169,X170,X171,X172,X18,X45,X5,X58,X84,X95,X98,A,C6,E,P6,R,X166,X167,X169,X170,X171,X172,X18,X45,X5,X58,X84,X95,X98,antenna,co-antenna,co-domino,co-fish,co-twin-house,domino,fish,twin-house)-free
- (2K3 + e,C5,C6,P6,X5,2P4,A,C6,C7,E,P7,R,X1,X103,X5,X58,X84,X98,antenna,co-domino,co-rising sun,co-twin-house,domino,parachute,parapluie,rising
sun,sunlet4)-free
- (2K3,2K3 + e,2P3,C5,C6,C7,K2,3,K3
∪ P3,W4,X84,X95,A,C6,P6,X5,X98,butterfly,co-domino,co-fish,fish)-free
- (2K3,2K3 + e,3K1,A,H,T2,X18,X45,co-domino)-free
- (2K3,2P3,C5,C6,C7,K2,3,K3 ∪ P3,X84,3K2,C4 ∪ P2,C6,P2 ∪ P4,P6,X18,X5,co-antenna,co-domino,co-fish)-free
- (2K3,3K1,A,H,X45)-free
- (2P3,3K2,C4 ∪ P2,C6,K2,3,P6,X130,X132,X134,X152,X153,X154,X155,X156,X157,X158,X18,X84,X11,X127,X128,X129,X131,X133,X135,X136,X137,X138,X139,X140,X141,X142,X143,X144,X145,X146,X147,X148,X149,X150,X151,X30,X35,X46,co-XF12n+3,co-XF62n+3,co-antenna,co-eiffeltower,co-longhorn,domino,fish,odd
anti-hole)-free
- (2P3,P4)-free
- (2P4,A,C5,C6,C7,E,K3,3-e,P7,R,X1,X103,X5,X58,X84,X98,C6,P6,X5,sunlet4,co-antenna,co-domino,co-rising sun,domino,parachute,parapluie,rising sun,twin-house)-free
- (3K1,C5,K3 ∪ K4,BW3,K3,4-e,T2,X18,X92,X93)-free
- (3K1,C5,K5 - e,C6 ∪ K1,C7,K3,3 ∪ K1,K3,3-e ∪ K1,domino ∪ K1)-free
- (3K1,C5,C6,P6)-free
- (3K1,C5,C6,X164,X165,sunlet4)-free
- (3K1,P4)-free
- (3K1,2P3)-free
- (3K1,3K2)-free
- (3K1,C6)-free
- (3K1,E)-free
- (3K1,H)-free
- (3K1,K1,5)-free
- (3K1,K2 ∪ claw)-free
- (3K1,P2 ∪ P4)-free
- (3K1,P3)-free
- (3K1,P6)-free
- (3K1,T2,X2,X3,anti-hole)-free
- (3K1,X172)-free
- (3K1,XC12)-free
- (3K1,co-cross)-free
- (3K1,co-fork)-free
- (3K1,house)-free
- (3K1,paw)-free
- 3K1-free
- (3K2,A,C4 ∪ 2K1,E,P2 ∪ P3,R,K5
- e,co-claw,net,odd anti-hole,twin-house)-free
- (3K2,C4 ∪ P2,C5,C6,K2 ∪ K3,K3,3,K3,3+e,P2
∪ P4,P6,X18,X5,2P3,C6,C7,X84,antenna,domino,fish)-free
- (3K2,C4 ∪ P2,C5,P2 ∪ P4,P5,S3,X1,X46,X70,3K2,C4 ∪ P2,P2
∪ P4,X1,X46,X70,co-fish,co-rising sun,fish,house,net,rising sun)-free
- (3K2,C5,P2 ∪ P4,XZ11,XZ12,XZ13,XZ14,XZ6,XZ7,XZ8,XZ9,XZ11,XZ12,XZ13,XZ14,XZ6,XZ7,XZ8,XZ9,net)-free
- (3K2,co-paw,odd anti-hole)-free
- (3P3,P3 ∪ P4,P5,X102,X180,X181,X182,X183,X184,X185,X186,X187,X188,X189,X190,X191,X192,X193,5-pan,A,P6,co-twin-C5)-free
- (4,0)-colorable
- (4K1,C7,S3,X175,X176,X42,X36,claw,co-antenna,net,odd
anti-hole)-free
- (4K1,C7,X195,X196,X38,X39,W5,X194,X86,X88,X89,X90,house)-free
- (4K1,C7,X38,X39,K3,3 ∪ K1,W4 ∪ K1,W5,X86,X87,X88,X89,X90,butterfly ∪ K1,diamond)-free
- (4K1,K4)-free
- (4K1,P4)-free
- (4K1,Cn+4)-free
- (4K1,co-claw,co-diamond)-free
- (4K1,gem)-free
- (4K1,house)-free
- (4K1,net)-free
- (4K1,odd anti-hole,odd-hole)-free
- 4K1-free
- (5,1)
- (5,2)-chordal
- (5,2)-crossing-chordal
- (5-pan,T2,X172)-free
- (5-pan,T2,X172)-free ∩ planar
- (6,2)
- 6K1-free
- (7,3)
- 7K1-free
- (8,4)
- (A,C5,C6,K2 ∪ K3,K3,3,K3,3+e,K3,3-e,P6,X5,X98,2P3,C6,C7,W4,X84,X95,co-butterfly,co-fish,domino,fish)-free
- (A,C5,C6,P6,domino,house)-free
- (A,C5,P5,A,house,parachute,parapluie)-free
- (A,E,S3,X1,domino,hole,house,net,rising sun)-free
- (A,P6,clique wheel,domino,hole,house)-free
- (A,3P3,Cn+4,P3
∪ P4,X102,X180,X181,X182,X183,house)-free
- AT-free ∩ claw-free
- Berge ∩ claw-free
- (C4 ∪ P2,C5,C6,K2 ∪ K3,K2,3,P6,W4,X18,X5,X84,C4 ∪ P2,C6,P6,W4,X18,X5,X84,antenna,co-antenna,co-domino,co-fish,domino,fish)-free
- (C4,P5)-free
- (C4,X91,claw)-free
- (C5,C6,C7,C8,P8,X19,X20,X21,X22,gem,house)-free
- (C5,C6,P6,X17,X18,X5,X98,C6,P6,antenna,domino)-free
- (C5,C6,P6,C6,P6,X17,X18,X5,X98,co-antenna,co-domino)-free
- (C5,C6,P6,C6,P6)-free
- (C5,K2 ∪ K3,K2,3,P,P2 ∪ P3,P5,P,P2 ∪ P3,co-fork,fork,house)-free
- (C5,P,P5,S3,P,co-fork,fork,house,net)-free
- (C5,P,P5,P,bull,co-gem,fork)-free
- (C5,P,P5,P,co-fork,fork,house)-free
- (C5,P,P5,P,house)-free
- (C5,P,P5,house)-free
- (C5,P,co-fork,fork,gem,house)-free
- (C5,P5,A,C6,P6,co-domino)-free
- (C5,P5,C6,C7,C8,P8,X19,X20,X21,X22,co-gem)-free
- (C5,P5,P,co-fork,co-gem,fork)-free
- (C5,P5,P,house)-free
- (C5,P5,P2 ∪ P3)-free
- (C5,P5,co-fish,fish,house)-free
- (C5,P5,gem)-free
- (C5,P5,house)-free
- (C5,P5)-free
- (C5,S3,XZ11,XZ12,XZ13,XZ14,XZ6,XZ7,XZ8,XZ9,3K2,P2 ∪ P4,XZ11,XZ12,XZ13,XZ14,XZ6,XZ7,XZ8,XZ9)-free
- (C5,S3,3K2,P2 ∪ P4)-free
∩ P4-tidy
- (C5,XZ11,XZ12,XZ13,XZ14,XZ6,XZ7,XZ8,XZ9,XZ11,XZ12,XZ13,XZ14,XZ6,XZ7,XZ8,XZ9)-free
- C5-free ∩ P4-extendible
- C5-free ∩ P4-tidy
- C5-free ∩ matrogenic
- (C6,K2 ∪ K3,X103,X37,X88,X90,Cn+4
∪ K1,T2,net ∪ K1,co-diamond,co-domino,co-eiffeltower,co-twin-C5)-free
- (C6,P6,P6,X10,X11,X12,X13,X14,X15,X5,X6,X7,X8,X9,anti-hole,co-antenna)-free
- (C6,C6)-free murky
- (Cn+4 ∪ K1,C(n,k),W4,odd-cycle ∪ K1,even anti-hole,net)-free
- (Cn+4 ∪ K1,C(n,k),X42,T2,X2,X3,odd-cycle ∪ K1,even anti-hole,net)-free
- (Cn+4 ∪ K1,S3 ∪ K1,X42,T2,X2,X3,odd-cycle ∪
K1,even anti-hole,net)-free
- (Cn+4 ∪ K1,S3 ∪ K1,X42,T2,X205,X206,X207,X208,odd-cycle ∪ K1,even anti-hole,net)-free
- (Cn+4 ∪ K1,S3,W4,W5,C6,claw,net)-free
- (Cn+4 ∪ K1,S3,W4,odd-cycle ∪ K1,even
anti-hole,net)-free
- (Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X35,X36,XF2n+1,XF3n,XF4n,anti-hole,co-XF12n+3,co-XF52n+3,co-XF62n+2)-free
- (Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X35,X36,XF2n+1,XF3n,XF4n,co-XF12n+3,co-XF52n+3,co-XF62n+2,odd
anti-hole)-free
- (Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X36,XF12n+3,XF2n+1,XF3n,XF4n,XF52n+3,XF62n+2,Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X36,co-XF12n+3,co-XF2n+1,co-XF3n,co-XF4n,co-XF52n+3,co-XF62n+2,odd
anti-hole)-free
- (Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X36,XF12n+3,XF2n+1,XF3n,XF4n,XF52n+3,XF62n+2,Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X36,co-XF12n+3,co-XF2n+1,co-XF3n,co-XF4n,co-XF52n+3,co-XF62n+2,odd-hole)-free
- (Cn+6,X37,claw,co-antenna,net,sun)-free
- Dilworth 2
- Dilworth 3
- (H,K3 ∪ 2K1,Cn+4,K5 -
e,X100,X101,X102,co-4-fan,net)-free
- (H,K3 ∪ 2K1,Cn+4,K5 -
e,co-4-fan,net)-free
- HH-free
- HHD-free
- HHD-free ∩ co-HHD-free
- HHDA-free
- HHDG-free
- HHDS-free
- HHDbicycle-free
- HHG-free
- HHP-free
- Hamiltonian hereditary
- Helly circular arc ∩ concave-round
- Helly circular arc ∩ quasi-line
- (K1,4,P,P5,fork)-free
- (K1,4,P5)-free
- (K2 ∪ K3,P4,butterfly)-free
- (K2 ∪ K3,P5,X37,X38,co-diamond,co-domino,co-twin-C5)-free
- (K2 ∪ K3,X90,Cn+4 ∪ K1,T2,co-domino,co-paw,co-twin-C5)-free
- (K2 ∪ K3,P,X163,X95,co-diamond,house)-free
- (K2 ∪ K3,co-diamond)-free
- (K2,3,P,P5,X163,X95,diamond)-free
- (K2,3,P,P5)-free
- (K2,3,P,hole)-free
- (K2,3,P4,co-butterfly)-free
- (K2,3,P5)-free
- (K3 ∪ 3K1,Cn+4,co-dart,co-gem)-free
- (K3,3 ∪ K1,K4,W4 ∪ K1,W5,X86,X87,X88,X89,X90,C7,X38,X39,butterfly ∪ K1,co-diamond)-free
- (K3,3,3,Cn+4)-free
- (K3,3,K3,3+e,2P3,Cn+4)-free
- (K3,3,P5)-free
- (K3,3,Cn+4)-free
- (K3,3-e,P5,X98)-free
- (K3,3-e,P5,X99)-free
- (K3,3-e,P5)-free
- (K4,4,P5)-free
- (K4,P4)-free
- (K4,P5,W5,X194,X86,X88,X89,X90,C7,X195,X196,X38,X39)-free
- (K4,P5)-free
- Meyniel ∩ co-Meyniel
- Meyniel ∩ weakly chordal
- N*
- (P,P5,S3,P,co-fork,fork,house,net)-free
- (P,P5,3K2,gem)-free
- (P,P5,P,co-fork,fork,house)-free
- (P,P5,co-fork)-free
- (P,P5)-free
- (P,P,co-fork,fork)-free
- (P3 ∪ 2K1,Cn+4,X102,X204,co-gem)-free
- (P4,2P3)-free
- (P4,co-cycle)-free
- P4-extendible
- P4-extendible ∩ P4-sparse
- P4-free
- P4-indifference
- P4-laden
- P4-lite
- P4-reducible
- P4-simplicial
- P4-sparse
- P4-tidy
- P4-tidy ∩ (S3,3K2,E,P2 ∪ P4,odd anti-hole,odd-hole)-free
- P4-tidy ∩ balanced
- P4-tidy ∩ hereditary clique-Helly ∩ perfect
- P4-tidy ∩ perfect
- (P5,S3,A,E,X1,anti-hole,co-domino,co-rising
sun,net)-free
- (P5,S3,anti-hole,co-domino,co-gem)-free
- (P5,X82,X83)-free
- (P5,A,P6,anti clique wheel,anti-hole,co-domino)-free
- (P5,A,anti-hole,co-domino)-free
- (P5,C6)-free
- (P5,C6)-free ∩ weakly chordal
- (P5,P,anti-hole)-free
- (P5,P,gem)-free
- (P5,P2 ∪ P3)-free
- (P5,X38,co-gem)-free
- (P5,anti-hole,co-bicycle,co-domino)-free
- (P5,anti-hole,co-domino,co-gem)-free
- (P5,anti-hole,co-domino,co-sun)-free
- (P5,anti-hole,co-domino)-free
- (P5,anti-hole,co-gem)-free
- (P5,anti-hole)-free
- (P5,bull,co-fork)-free
- (P5,bull,house)-free
- (P5,bull,odd anti-hole)-free
- (P5,bull)-free
- (P5,claw)-free
- (P5,co-domino,co-gem)-free
- (P5,co-fork,house)-free
- (P5,co-fork)-free
- (P5,cricket)-free
- (P5,diamond)-free
- (P5,fork,house)-free
- (P5,fork)-free
- (P5,gem)-free
- (P5,house)-free
- (P5,triangle)-free
- P5-free
- P5-free ∩ tripartite
- P5-free ∩ weakly chordal
- (P6,X10,X11,X12,X13,X14,X15,X5,X6,X7,X8,X9,C6,P6,antenna,hole)-free
- (P6,claw)-free
- PI
- PI*
- (S3,Cn+4,S3 ∪ K1,co-claw)-free
- (S3,Cn+4,T2)-free
- (S3,Cn+4,co-claw,net)-free
- (S3,Cn+4,co-claw)-free
- (S3,Cn+4,net)-free
- (S3,claw,net)-free
- (S3,net)-free ∩ extended P4-sparse
- (W4,claw,gem,odd-hole)-free
- (W4,claw,gem)-free
- (W4,claw)-free
- Welsh-Powell opposition
- (X103,Cn+4,S3 ∪ K1,net ∪ K1,co-claw,co-eiffeltower)-free
- (X12,X5,X95,X96,X97,X12,X5,X95,X96,X97,claw ∪ triangle,claw ∪ triangle,co-cricket,co-twin-house,cricket,odd
anti-hole,odd-hole,twin-house)-free
- (X34,X36,XF2n+1,XF3n,Cn+4,co-XF12n+3,co-XF62n+2)-free
- (X42,T2,X205,X206,X207,X208,net)-free ∩ normal circular arc
∩ quasi-line
- (X91,claw)-free
- (XC1,XC2,XC3,XC4,XC5,XC6,XC7,XC8)-free
- (XC7,XC1,XC2,XC3,XC4,XC5,XC6,XC8)-free
- XC9-free
- (XF12n+3,XF52n+3,XF62n+2,Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X35,X36,co-XF2n+1,co-XF3n,co-XF4n,hole)-free
- (XZ11,XZ12,XZ13,XZ14,XZ6,XZ7,XZ8,XZ9,XZ11,XZ12,XZ13,XZ14,XZ6,XZ7,XZ8,XZ9)-free
- (2C4,3K2,C6,E,P2 ∪ P4,P6,X25,X26,X27,X28,X29,odd anti-cycle)-free
- (3K2,C6,P7,X164,X165,sunlet4,odd
anti-cycle)-free
- (A,T2,odd anti-cycle)-free
- (Cn+3 ∪ K1,co-diamond,co-paw)-free
- (Cn+4,H)-free
- (Cn+4,T2,X31,co-XF2n+1,co-XF3n)-free
- (Cn+4,T2,co-XF2n+1)-free
- (Cn+4,X59,co-longhorn)-free
- (Cn+4,bull,co-dart,co-gem)-free
- (Cn+4,bull,house)-free
- (Cn+4,co-claw,co-gem,house)-free
- (Cn+4,co-claw,co-gem)-free
- (Cn+4,co-claw)-free
- (Cn+4,co-dart,co-gem)-free
- (Cn+4,co-diamond)-free
- (Cn+4,co-gem)-free
- (Cn+4,co-sun)-free
- (Cn+4,net)-free
- (Cn+4,odd co-sun)-free
- Cn+4-free
- (Cn+6,odd anti-cycle)-free
- (E,odd anti-cycle)-free
- (K1,4,co-diamond)-free
- (K1,4,co-paw)-free
- (K1,4,odd anti-cycle)-free
- (P,butterfly,fork,gem)-free
- (P,fork,gem)-free
- (P,fork,house)-free
- (P,fork)-free
- P3-free
- (P7,star1,2,3,sunlet4,odd
anti-cycle)-free
- (P7,star1,2,3,odd anti-cycle)-free
- (P7,odd anti-cycle)-free
- (T2,X205,X206,X207,X208,even anti-hole,odd anti-cycle)-free
- (T2,co-cycle)-free
- (T3,X81,co-cycle)-free
- (T3,co-cycle)-free
- W2n+3-free
- (X177,odd anti-cycle)-free
- (X37,co-diamond,even anti-cycle)-free
- (XC11,co-claw,co-diamond)-free
- (XC11,odd anti-cycle)-free
- XC11-free
- (XC12,co-cycle)-free
- XC12-free
- XC13-free
- (claw ∪ 3K1,odd anti-cycle)-free
- odd-cycle ∪ K1-free
- (star1,2,3,sunlet4,odd anti-cycle)-free
- (star1,2,3,odd anti-cycle)-free
- absolutely perfect
- almost-split
- alternately orientable ∩ co-comparability
- (anti-hole,co-domino,odd anti-cycle)-free
- (anti-hole,co-sun,hole)-free
- (anti-hole,fork)-free
- (anti-hole,hole,sun)-free
- (anti-hole,hole)-free
- (anti-hole,odd anti-cycle)-free
- b-perfect
- biclique separable
- bipartite ∪ co-bipartite ∪ co-line graphs of bipartite graphs ∪ line graphs of bipartite graphs
- bipartite ∪ co-bipartite ∪ split
- bipolarizable
- bithreshold
- bitolerance
- bounded bitolerance
- bounded multitolerance
- bounded tolerance
- boxicity 2 ∩ co-bipartite
- brittle
- (bull,co-fork,fork)-free
- (bull,fork,gem)-free
- (bull,fork,house)-free
- (bull,fork)-free
- (bull,hole,odd anti-hole)-free
- (butterfly,claw)-free
- charming
- chordal ∪ co-chordal
- chordal-perfect
- circle graph with equator
- circular arc ∩ co-bipartite
- circular arc ∩ cograph
- circular interval
- (claw,co-claw)-free
- (claw,net)-free
- (claw,odd anti-hole,odd-hole)-free
- (claw,odd anti-hole)-free
- (claw,odd anti-hole)-free ∩ tripartite
- (claw,odd-hole)-free
- (claw,odd-hole)-free ∩ tripartite
- (claw,paw)-free
- claw-free
- claw-free ∩ locally connected
- claw-free ∩ mock threshold
- claw-free ∩ normal Helly circular arc
- claw-free ∩ odd anti-hole-free ∩ tripartite
- claw-free ∩ odd-hole-free ∩ tripartite
- claw-free ∩ perfect
- claw-free ∩ upper domination perfect
- claw-free ∩ well covered
- clique graphs of Helly circular arc
- clique graphs of normal Helly circular arc
- cliquewidth 2
- co-2-subdivision
- co-Gallai
- co-HHD-free
- co-Meyniel
- co-Welsh-Powell opposition
- co-β-perfect
- co-biconvex
- co-bipartite
- co-bipartite ∩ concave-round
- co-bipartite ∩ normal circular arc
- co-bipartite ∩ proper circular arc
- co-bithreshold
- co-bounded tolerance
- co-building-free
- co-chordal
- co-chordal ∩ comparability
- co-chordal ∩ superperfect
- (co-claw,co-diamond,odd anti-hole)-free
- (co-claw,co-diamond)-free
- (co-claw,co-paw)-free
- (co-claw,odd anti-cycle)-free
- co-cluster
- co-comparability
- co-comparability ∩ comparability
- co-comparability ∩ tolerance
- co-comparability graphs of dimension d posets
- co-comparability graphs of posets of interval dimension 2
- co-comparability graphs of posets of interval dimension 2, height 2
- co-comparability graphs of posets of interval dimension d
- co-cycle-free
- (co-diamond,diamond)-free
- (co-diamond,even anti-cycle)-free
- (co-diamond,house)-free
- (co-diamond,odd anti-hole)-free
- co-diamond-free
- co-forest-perfect
- (co-fork,hole)-free
- (co-fork,odd anti-cycle)-free
- co-interval
- co-interval ∩ cograph
- co-interval ∪ interval
- co-interval bigraph
- co-interval containment bigraph
- co-leaf power
- co-line graphs of bipartite graphs
- (co-odd building,odd anti-hole)-free
- (co-paw,odd anti-hole)-free
- (co-paw,paw)-free
- (co-paw,triangle)-free
- co-paw-free
- co-planar
- co-probe cograph
- co-proper interval bigraph
- co-strongly chordal
- co-tolerance
- co-trapezoid
- co-trivially perfect
- cograph
- cograph contraction
- comparability ∩ distance-hereditary
- comparability ∩ weakly chordal
- comparability graphs of dimension 2 posets
- comparability graphs of posets of interval dimension 2
- comparability graphs of posets of interval dimension 2, height 3
- comparability graphs of semiorders
- comparability graphs of series-parallel posets
- complete multipartite
- concave-round
- containment graph of intervals
- d-trapezoid
- distance-hereditary
- domination
- domino
- (domino,gem,hole,house,net)-free
- (domino,gem,house)-free ∩ pseudo-modular
- domishold
- even anti-cycle-free
- even-hole-free ∩ probe chordal
- extended P4-laden
- extended P4-reducible
- extended P4-sparse
- forest-perfect
- (fork,house)-free
- (fork,triangle)-free
- fork-free
- fuzzy circular interval
- fuzzy linear interval
- generalized strongly chordal
- good
- hereditary Matula perfect
- hereditary N*-perfect
- hereditary V-perfect
- hereditary Welsh-Powell opposition
- hereditary Welsh-Powell perfect
- hereditary homogeneously orderable
- hereditary sat
- (hole,odd anti-hole)-free
- hole-free
- hole-free ∩ planar
- (house,hole,domino,sun)-free
- house-free ∩ weakly chordal
- intersection graphs of parallelograms (squares)
- leaf power ∪ min leaf power
- line graphs of bipartite multigraphs
- line graphs of multigraphs without triangles
- linear cliquewidth 2
- matrogenic
- matroidal
- maxibrittle
- maximal planar
- middle
- min leaf power
- mock threshold
- module-composed
- multitolerance
- odd anti-cycle-free
- parallelepiped
- perfect connected-dominant
- permutation
- probe HHDS-free
- probe P4-reducible
- probe bipartite distance-hereditary
- probe chordal ∩ weakly chordal
- probe co-trivially perfect
- probe co-trivially perfect ∩ probe trivially perfect
- probe cograph
- probe distance-hereditary
- probe interval
- probe proper interval
- probe ptolemaic
- probe strongly chordal
- probe threshold
- probe trivially perfect
- probe unit interval
- proper Helly circular arc
- proper circular arc
- proper tolerance
- quasi-brittle
- quasi-line
- quasitriangulated
- semi-P4-sparse
- semicircular
- semiperfectly orderable
- split-perfect
- strict 2-threshold
- strong tree-cograph
- strongly orderable
- sun-free ∩ weakly chordal
- superbrittle
- threshold signed
- threshold tolerance
- tolerance
- trapezoepiped
- trapezoid
- tree-cograph
- tree-perfect
- unit Helly circular arc
- unit circular arc
- unit tolerance
- weak bipolarizable
- weakly chordal
GI-complete
NP-hard
NP-complete
- (0,3)-colorable
- (1,2)-split
- 1-string
- 2-SEG
- 2-circular arc
- 2-circular track
- 2-interval
- 2-track
- (2K3 + e,X98,house)-free
- (2K3 + e,X99,house)-free
- (2K3 + e,house)-free
- (2K3,2K3 + e,A,H,X45,XZ5,co-domino)-free
- (2K3,X42,A,H,X45,X46,X47,X48,X49,X50,X51,X52,X53,X54,X55,X56,X57)-free
- (2K3,house)-free
- (2K4,house)-free
- 3-DIR
- 3-DIR contact
- 3-circular track
- 3-interval
- 3-mino
- 3-track
- 4-colorable
- (4-fan,K1,4,W4,W5,A ∪ K1,co-fork
∪ K1,gem ∪ K1,net ∪ K1)-free
- (5,2)
- 5-colorable
- 6-colorable
- B1-CPG
- B1-CPG ∩ triangle-free
- B1-VCPG
- B1-VPG
- B2-VPG
- B3-VPG
- (BW3,W5,W7,X103,X104,X105,X106,X107,X108,X109,X110,X111,X112,X113,X114,X115,X116,X117,X118,X119,X120,X121,X122,X123,X124,X125,X126,X53,X88,C6,C8,T2,X3)-free
- BW3-free
- Bk-VPG
- Bouchet
- (C4,C5,C6,C7,C8,K1,4,K5,K5 - e,K3 ∪ 2K1,P3 ∪ 2K1,claw ∪ K1,butterfly,cricket,dart,gem)-free
- (C4,C5,C6,C7,C8,K1,4,K5,K5 - e,K3 ∪ 2K1,P3 ∪ 2K1,claw ∪ K1,butterfly,cricket,dart,gem)-free ∩ planar
- (C4,C5,C6,C7,C8)-free
- (C4,C5,C6,C7,C8)-free ∩ maximum degree 3 ∩ planar
- (C4,C5,C6,S3)-free
- (C4,C5)-free
- (C4,S3)-free
- (C4,A,H)-free
- C4-free
- (C5,S3,X11,3K2,C7,P2 ∪ P4,X173)-free
- (C5,S3,3K2,P2 ∪ P4)-free
- (C5,house)-free
- C5-free
- (C6,C6)-free
- (C6,house)-free
- C6-free
- (C7,odd anti-hole)-free
- CONV
- CPG
- Helly 2-acyclic subtree
- (K1,4,diamond)-free
- (K1,4,paw)-free
- K1,4-free
- (K1,5,triangle)-free
- (K2 ∪ K3,P,house)-free
- (K2 ∪ K3,house)-free
- K2 ∪ K3-free
- K2,3-free
- (K3 ∪ 2K1,K3 ∪ 2K1,bull,co-cricket,co-dart,cricket,dart)-free
- (K3 ∪ P3,C6,P,P7,X37,X41)-free
- (K3,3,K5)-minor-free
- (K4,S3)-free
- K4-free
- K6-free
- K7-free
- P-free
- P4-bipartite
- (S3,S4,net)-free
- (S3,3K2,E,P2
∪ P4)-free
- (S3,Cn+6,X37,antenna,co-claw,co-sun)-free
- (S3,co-claw,net)-free
- (S3,co-claw)-free
- (S3,net)-free
- (S3,net)-free ∩ sun-free
- S3-free
- SEG
- VPG
- W2n+3-free
- (W4,W5,butterfly)-free
- (W4,gem)-free
- Wn+4-free
- (X30,XZ1,XZ4,longhorn)-free
- (X38,gem,house)-free
- (X42,T2,X205,X206,X207,X208,net)-free
- (X79,X80)-free
- XC10-free
- (XC12,triangle)-free
- (XC12,triangle)-free ∩ planar
- XC13-free
3-perfect
- 2P3-free
- (5-pan,T2,X172)-free
- (A,P6,co-domino)-free
- BW3-free
- C6-free
- (Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X35,X36,X37,X38,X39,X40,X41,co-XF2n+1,co-XF3n,co-XF4n)-free
- Cn+6-free
- Cn+7-free
- (E,P)-free
- E-free
- (K1,4,P,co-fork,house)-free
- (K1,4,house)-free
- K1,4-free
- K2 ∪ claw-free
- (P,P7)-free
- (P,P8)-free
- (P,T2)-free
- (P,star1,2,3)-free
- (P,co-star1,2,4)-free
- (P,co-star1,2,5)-free
- (P,house)-free
- P-free
- P2 ∪ P4-free
- (P6,X30,X8)-free
- (P6,co-claw)-free
- P6-free
- P7-free
- (X30,XZ1,XZ4,co-longhorn)-free
- (X79,X80)-free
- (X82,X83,house)-free
- (X91,co-claw)-free
- (n+4)-pan-free
- alternation
- anti-hole-free
- apex
- biplanar
- book thickness 2
- building-free
- (bull,co-fork)-free
- (bull,house)-free
- bull-free
- (butterfly,gem)-free
- caterpillar arboricity <= 2
- clique graphs
- clique-Helly
- (co-claw,house)-free
- co-claw-free
- (co-cricket,house)-free
- co-domino-free
- (co-fork,house)-free
- co-fork-free
- co-sun-free
- coin
- (cross,triangle)-free
- diamond-free
- disk
- disk contact
- (domino,gem,house)-free
- domino-free
- even anti-hole-free
- gem-free
- genus 0
- genus 1
- hereditary clique-Helly
- hereditary maximal clique irreducible
- hereditary neighbourhood-Helly
- house-free
- k-DIR
- k-SEG
- line graphs of Helly hypergraphs of rank 3
- line graphs of linear hypergraphs of rank 3
- linear arboricity <= 2
- locally bipartite
- locally chordal
- locally split
- maximal clique irreducible
- maximum degree 3
- maximum degree 3 ∩ planar ∩ triangle-free
- maximum degree 4
- maximum degree 5
- maximum degree 6
- maximum degree 7
- neighbourhood chordal
- neighbourhood-Helly
- net-free
- odd anti-hole-free
- odd co-sun-free
- odd-sun-free
- partial bar visibility
- partial rectangle visibility
- paw-free
- perfect cochromatic
- planar
- planar ∩ triangle-free
- planar of maximum degree 3
- planar of maximum degree 4
- pretty
- probe diamond-free
- rectangle visibility
- split-neighbourhood
- strictly clique irreducible
- string
- subhamiltonian
- sun-free
- thickness <= 2
- toroidal
- triangle contact
- triangle-free
- tripartite
- unit 2-circular track
- unit 2-track
- unit 3-circular track
- unit 3-track
- weak bar visibility
- weak rectangle visibility
coNP-complete
Open
Unknown to ISGCI
- (0,2)-graph
- (1,2)-colorable
- (2,2)-colorable
- (2,2)-interval
- 2-DIR
- 2-connected
- 2-connected ∩ cubic ∩ planar
- 2-connected ∩ linearly convex triangular grid graph
- 2-edge-connected
- 2-outerplanar
- 2-split
- 2-split ∩ perfect
- 2-strongly regular
- 2-strongly regular ∩ planar
- 2-terminal series-parallel
- 2-thin
- (2K3 + e,A,C5,C6,E,H,K3,3-e,R,X168,X171,X18,X45,X5,X58,X84,X95,A,C6,E,H,R,X168,X171,X18,X45,X5,X58,X84,X95,antenna,co-antenna,co-domino,co-fish,co-twin-house,domino,fish,twin-house)-free
- (2P3,C4,C6)-free
- (2P3,triangle)-free
- 2P3-free
- 3-Helly
- (3K2,C5,C7,P2 ∪ P4,X173,X11,net)-free
- (3K2,C5,P2 ∪ P4,net)-free
- (3K2,E,P2 ∪ P4,net,odd anti-hole,odd-hole)-free
- (3K2,E,P2 ∪ P4,net)-free
- (3K2,E,net,odd anti-hole)-free
- (3K2,P,co-gem,house)-free
- (3K2,triangle)-free
- 4-regular
- 4-regular ∩ hamiltonian
- 4-regular ∩ hamiltonian ∩ planar
- 4-regular ∩ planar
- (5,2)-odd-chordal
- (5,2)-odd-crossing-chordal
- (5,2)-odd-noncrossing-chordal
- (5-pan,A,P6,X186,3P3,P3
∪ P4,X102,X180,X181,X182,X183,X184,X185,X187,X188,X189,X190,X191,X192,X193,house,twin-C5)-free
- 5-regular
- 5-regular ∩ hamiltonian
- 5-regular ∩ hamiltonian ∩ planar
- 5-regular ∩ planar
- (6,1)-chordal
- (6,1)-even-chordal
- (6,2)-chordal
- (6,3)
- (6-fan,C4 ∪ P2,C5,C6 ∪ K1,C7,K2 ∪ K3,K2,3,P2
∪ P4,W4 ∪ K1,W6,X132,X169,X176,X18,X197,X198,X199,X200,X201,X202,X35,X84,C4 ∪ P2,C6 ∪ K1,C7,P2 ∪ P4,W4
∪ K1,W6,X132,X169,X176,X18,X197,X198,X199,X200,X201,X35,X84,butterfly ∪ K1,butterfly ∪ K1,co-6-fan,co-fish,fish)-free
- (7,4)
- (7,5)
- (9,6)
- (A ∪ K1,K1,4,W4,W5,co-4-fan,co-fork
∪ K1,gem ∪ K1,net ∪ K1)-free
- (A,C4 ∪ 2K1,P2 ∪ P3,R,K5 - e,W5,co-claw,twin-C5,twin-house)-free
- (A,C4 ∪ 2K1,P2 ∪ P3,R,K5 - e,co-claw,odd
anti-hole,twin-house)-free
- (A,H,K3,3,K3,3-e,T2,X18,X45,domino,triangle)-free
- (A,H,K3,3,K3,3-e,X45,XZ5,domino)-free
- (A,H,K3,3,X45,X46,X47,X48,X49,X50,X51,X52,X53,X54,X55,X56,X57,X42)-free
- (A,H,K3,3,X45,triangle)-free
- (A,P6,domino)-free
- AT-free
- B0-CPG
- B0-VPG
- B0-VPG ∩ triangle-free
- (BW3,C5,K3,4,K3,4-e,T2,X18,X92,X93,triangle)-free
- Berge
- Berge ∩ bull-free
- Birkhoff
- (C4,C5,C6,C7,C8,H,K1,4,X85,triangle)-free
- (C4,C5,C6,C7,C8,H,X85,triangle)-free
- (C4,C5,C6,C7,C8,H,X85,triangle)-free ∩ K1,4-free
- (C4,C5,K4,diamond)-free
- (C4,C5,K4,diamond)-free ∩ planar
- (C4,C5,T2)-free
- (C4,C5)-free ∩ Helly
- (C4,C5)-free ∩ cop-win
- (C4,P6)-free
- (C4,co-claw)-free
- (C4,diamond)-free
- (C4,odd-hole)-free
- (C4,triangle)-free
- (C4,triangle)-free ∩ planar
- C4-free ∩ odd-signable
- C4-free ∩ perfect
- (C5,C6,X164,X165,sunlet4,triangle)-free
- (C5,K3,3-e,T2,X18,X94,domino,triangle)-free
- (C5,P,P,bull,co-fork,gem,house)-free
- (C5,P2 ∪ P3,house)-free
- (C5,P6,P6)-free
- (C5,S3,X11,3K2,C7,P2 ∪ P4,X173)-free ∩ co-line
- (C5,bull,co-gem,gem)-free
- (C5,co-gem,gem)-free
- (C5,co-gem,house)-free
- (C6,C8,T2,X3,BW3,W5,W7,X103,X105,X106,X107,X108,X109,X110,X111,X112,X113,X114,X115,X116,X117,X118,X119,X120,X121,X122,X123,X124,X125,X126,X53,X88,co-X104)-free
- (C6,K2 ∪ K3,X37,X90,Cn+4 ∪ K1,T2,Wn+4,X31,co-XF2n+1,co-XF3n,co-domino,co-twin-C5)-free
- (C6,K3,3+e,P,P7,X37,X41)-free
- (C6,S3,Cn+4 ∪ K1,W4,W5,co-claw,net)-free
- (C6,triangle)-free
- CIS
- (Cn+3 ∪ K1,diamond,paw)-free
- (Cn+4 ∪ K1,K2,3,T2,Wn+4,X31,XF2n+1,XF3n,C6,X37,X90,domino,twin-C5)-free
- (Cn+4 ∪ K1,K2,3,T2,C6,X103,X37,X88,X90,diamond,domino,eiffeltower,net
∪ K1,twin-C5)-free
- (Cn+4 ∪ K1,K2,3,T2,X90,domino,paw,twin-C5)-free
- (Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X35,X36,X37,X38,X39,X40,X41,XF2n+1,XF3n,XF4n)-free
- Cn+6-free
- Cn+7-free
- D
- Delaunay
- Deza
- Dilworth 4
- (E,P)-free
- (E,triangle)-free
- E-free
- E-free ∩ planar
- EPT
- Gabriel
- Gallai
- Gallai-perfect
- (H,triangle)-free
- Halin
- Hamilton-connected
- Hamming
- Helly
- Helly ∩ bridged
- Helly ∩ reflexive
- Helly cactus subtree
- Helly cactus subtree ∩ perfect
- Helly circle
- Helly circular arc
- Helly circular arc ∩ (C7,odd-hole)-free
- Helly circular arc ∩ perfect
- Helly circular arc ∩ self-clique
- Helly subtree
- Hn,q grid
- K1,4-free ∩ almost claw-free ∩ locally connected
- K1,4-free ∩ well covered
- (K2 ∪ K3,X11,X127,X128,X129,X131,X133,X135,X136,X137,X138,X139,X140,X141,X142,X143,X144,X145,X146,X147,X148,X149,X150,X151,X30,X35,X46,XF12n+3,XF62n+3,2P3,3K2,C4
∪ P2,C6,P6,X130,X132,X134,X152,X153,X154,X155,X156,X157,X158,X18,X84,antenna,co-domino,co-fish,eiffeltower,longhorn,odd-hole)-free
- (K2 ∪ K3,P,anti-hole)-free
- (K2 ∪ claw,triangle)-free
- K2 ∪ claw-free
- (K2,3,K4)-minor-free
- (K2,3,X37,X38,diamond,domino,house,twin-C5)-free
- (K2,3,diamond)-free
- (K2,3,diamond)-free ∩ weakly modular
- (K4,S3,X36,C7,X175,X176,X42,antenna,co-claw,net,odd-hole)-free
- (K4,co-gem)-free
- (K4,odd anti-hole,odd-hole)-free
- (K4,odd anti-hole,odd-hole)-free ∩ dually chordal
- K4-free ∩ dually chordal ∩ perfect
- K4-free ∩ perfect
- K4-minor-free
- (K5,X126,X174,3K2)-minor-free
- Laman
- Laman ∩ planar
- Matula perfect
- Meyniel
- Mycielski
- N*-perfect
- (P,P7)-free
- (P,P8)-free
- (P,T2)-free
- (P,co-butterfly,co-fork,co-gem)-free
- (P,co-fork,co-gem)-free
- (P,co-fork)-free
- (P,co-gem,house)-free
- (P,star1,2,3)-free
- (P,star1,2,4)-free
- (P,star1,2,5)-free
- (P2 ∪ P3,house)-free
- (P2 ∪ P4,triangle)-free
- P2 ∪ P4-free
- P4-brittle
- P4-comparability
- (P6,X30,X8)-free
- (P6,triangle)-free
- P6-free
- P6-free ∩ tripartite
- P7-free
- PURE-3-DIR
- PURE-k-DIR
- Raspail
- (S3,T2,X2,X3,Cn+4 ∪ K1,C(n,k),X42,even-hole,odd-cycle ∪ K1)-free
- (S3,T2,X2,X3,Cn+4 ∪ K1,S3 ∪ K1,X42,even-hole,odd-cycle
∪ K1)-free
- (S3,T2,X205,X206,X207,X208,Cn+4
∪ K1,S3 ∪ K1,X42,even-hole,odd-cycle
∪ K1)-free
- (S3,T2,X205,X206,X207,X208,X42)-free
- (S3,3K2,E,P2
∪ P4,odd anti-hole,odd-hole)-free
- (S3,3K2,E,odd-hole)-free
- (S3,Cn+4 ∪ K1,C(n,k),W4,even-hole,odd-cycle ∪ K1)-free
- Urquhart
- V-perfect
- (W4,gem)-free ∩ short-chorded
- Welsh-Powell perfect
- (X172,triangle)-free
- (X37,diamond,even-cycle)-free
- XC10-free ∩ pseudo-modular
- XC10-free ∩ weakly modular
- (XF12n+3,XF52n+3,XF62n+2,Cn+6,T2,X2,X3,X30,X31,X32,X33,X34,X35,X36,co-XF2n+1,co-XF3n,co-XF4n,odd-hole)-free
- β-perfect
(G)-perfect
- (3K2,odd-hole,paw)-free
- (C7,odd-hole)-free
- (W4,W5,co-butterfly)-free
- (W4,co-claw,co-gem,odd anti-hole)-free
- (W4,co-claw,co-gem)-free
- (W4,co-claw)-free
- (W4,co-gem)-free
- Wn+4-free
- XC10-free
- absolute reflexive retract
- absorbantly perfect
- all-4-simplicial
- almost claw-free
- almost tree (1)
- alternately colourable
- alternately orientable
- (anti-hole,bull,odd-hole)-free
- (anti-hole,odd-hole)-free
- balanced
- balanced 2-interval
- balanced ∩ co-line
- balanced ∩ paw-free
- bar visibility
- basic perfect
- biclique-Helly
- bigeodetic
- bip*
- bipartable
- bipartite ∪ co-bipartite ∪ co-line graphs of bipartite graphs ∪ double split ∪ line graphs of bipartite graphs
- bisplit
- bounded cutwidth
- bounded degree
- bounded degree ∩ bounded treewidth
- bounded treewidth
- boxicity 2
- bridged
- bridged ∩ clique-Helly
- building-free ∩ even-signable
- building-free ∩ odd-signable
- (bull,co-fork,co-gem)-free
- (bull,co-gem,gem)-free
- (bull,house,odd-hole)-free
- (bull,odd anti-hole,odd-hole)-free
- bull-free ∩ perfect
- cactus
- circle
- circle ∩ diamond-free
- circle-n-gon, fixed n
- circle-polygon
- circle-trapezoid
- circular arc
- circular arc ∩ clique-Helly
- circular arc ∩ comparability
- circular arc ∩ diamond-free
- circular arc ∩ paw-free
- circular arc ∩ perfect
- circular perfect
- circular permutation
- circular strip
- circular trapezoid
- clique separable
- clique-Helly ∩ clique-chordal
- clique-Helly ∩ dismantlable
- clique-Helly ∩ dismantlable ∩ reflexive
- clique-chordal
- clique-perfect
- clique-perfect ∩ triangle-free
- cliquewidth 3
- cliquewidth 4
- co-Matula perfect
- co-P4-brittle
- co-Welsh-Powell perfect
- co-biclique separable
- (co-butterfly,co-claw)-free
- (co-butterfly,co-gem)-free
- co-circular perfect
- (co-claw,odd anti-hole,odd-hole)-free
- (co-claw,odd anti-hole)-free
- (co-claw,odd-hole)-free
- co-comparability ∪ comparability
- (co-gem,gem)-free
- (co-gem,house)-free
- co-gem-free
- co-hereditary clique-Helly
- co-interval filament
- co-interval mixed
- co-line
- co-perfectly orderable
- co-quasi-line
- co-unipolar
- co-unipolar ∪ unipolar
- comparability
- comparability graphs of dimension 3 posets
- comparability graphs of dimension 4 posets
- comparability graphs of dimension d posets
- comparability graphs of posets of interval dimension d
- complete Hamming
- containment graph of circles
- containment graphs
- containment graphs of circular arcs
- convex-round
- cop-win
- cubic
- cubic ∩ hamiltonian
- cubic ∩ hamiltonian ∩ planar
- cubic ∩ planar
- cycle-bicolorable
- diametral path
- (diamond,even-cycle)-free
- (diamond,odd-hole)-free
- diamond-free ∩ perfect
- disk-Helly
- dismantlable
- distance regular
- distance regular of diameter 2
- dominating pair
- domination perfect
- domination perfect ∩ planar
- domination perfect ∩ triangle-free
- double split
- doubled
- dually chordal
- dually chordal ∩ tripartite
- edge regular
- equimatchable
- even-cycle-free
- even-hole-free
- even-signable
- frame hereditary dominating pair
- fully cycle extendable
- generalized split
- generically minimally rigid
- geodetic
- girth >=9
- graceful
- grid intersection
- hamiltonian
- hamiltonian ∩ planar
- harmonious
- hereditary biclique-Helly
- hereditary clique-Helly ∩ paw-free ∩ perfect
- hereditary clique-Helly ∩ self-clique
- hereditary dismantlable
- hereditary open-neighbourhood-Helly
- hereditary weakly modular
- homogeneously orderable
- homothetic triangle contact
- i-triangulated
- induced-hereditary pseudo-modular
- interval enumerable
- interval filament
- interval regular
- interval regular of diameter 2
- irredundance perfect
- irredundance perfect with ir(G)=2
- irredundance perfect with ir(G)<= 4
- isometric-HH-free
- isometric-hereditary pseudo-modular
- k-outerplanar
- k-polygon
- k-regular, fixed k
- k-regular, fixed k>= 3
- k-regular, fixed k>= 6
- kernel solvable
- line perfect
- linearly convex triangular grid graph
- locally connected
- locally connected ∩ maximum degree 4
- locally connected ∩ maximum degree 7
- locally connected ∩ triangular grid graph
- locally perfect
- max-tolerance
- minimally imperfect
- murky
- (n+4)-pan-free
- nK2-free, fixed n
- nP3-free, fixed n
- nearly bipartite
- neighbourhood perfect
- neighbourhood-Helly ∩ pseudo-modular ∩ reflexive
- neighbourhood-Helly ∩ triangle-free
- normal
- normal Helly circular arc
- normal circular arc
- (odd anti-hole,odd-hole)-free
- (odd building,odd-hole)-free
- odd-cycle ∪ K1-free
- (odd-hole,paw)-free
- odd-hole-free
- odd-hole-free ∩ planar
- odd-hole-free ∩ pretty
- odd-signable
- odd-signable ∩ triangle-free
- open-neighbourhood-Helly
- opposition
- outer-string
- outerplanar
- overlap
- (p,q)-colorable
- (p,q)-split
- (p,q<=2)-colorable
- p-connected
- p-tree
- pairwise compatibility
- parity
- partial 2-tree
- partial 3-tree
- partial 3-tree ∩ planar
- partial 4-tree
- partial k-tree, fixed k
- partitionable
- partner-limited
- path orderable
- paw-free ∩ perfect
- perfect
- perfect ∩ planar
- perfect ∩ split-neighbourhood
- perfectly 1-transversable
- perfectly colorable
- perfectly contractile
- perfectly orderable
- planar ∩ strongly regular
- polar
- polyhedral
- preperfect
- probe (1,2)-colorable
- probe (2,2)-colorable
- probe AT-free
- probe Gallai
- probe Meyniel
- probe P4-sparse
- probe chordal
- probe chordal bipartite
- probe co-bipartite
- probe co-comparability
- probe comparability
- probe permutation
- probe split
- pseudo-median
- pseudo-modular
- (q, q-3), fixed q>= 7
- (q,q-4), fixed q
- (q,t)
- quasi-Meyniel
- quasi-median
- quasi-parity
- rectagraph
- rectangle intersection
- reflexive
- relative neighbourhood graph
- self-clique
- self-complementary
- semi-square intersection
- series-parallel
- short-chorded
- skeletal
- slender
- slightly triangulated
- slim
- solid triangular grid graph
- spider graph
- strict B1-VCPG
- strict quasi-parity
- strong asteroid free
- strong domination perfect
- strongly 3-colorable
- strongly circular perfect
- strongly even-signable
- strongly odd-signable
- strongly perfect
- strongly regular
- subtree filament
- subtree overlap
- superperfect
- totally unimodular
- treewidth 2
- treewidth 3
- treewidth 4
- treewidth 5
- triangular grid graph
- unbreakable
- unicyclic
- unigraph
- unimodular
- unipolar
- unit 2-circular arc
- unit 2-interval
- unit 3-interval
- unit Helly circle
- unit bar visibility
- unit disk
- unit grid intersection
- upper domination perfect
- upper irredundance perfect
- very strongly perfect
- visibility
- walk regular
- weak bisplit
- weak dominating pair
- weakly geodetic
- weakly median
- weakly modular
- well covered
- well-dominated
- wing-triangulated